Invariance of angular threshold computation in a wide-field looming-sensitive neuron.

نویسندگان

  • F Gabbiani
  • C Mo
  • G Laurent
چکیده

The lobula giant motion detector (LGMD) is a wide-field bilateral visual interneuron in North American locusts that acts as an angular threshold detector during the approach of a solid square along a trajectory perpendicular to the long axis of the animal (Gabbiani et al., 1999a). We investigated the dependence of this angular threshold computation on several stimulus parameters that alter the spatial and temporal activation patterns of inputs onto the dendritic tree of the LGMD, across three locust species. The same angular threshold computation was implemented by LGMD in all three species. The angular threshold computation was invariant to changes in target shape (from solid squares to solid discs) and to changes in target texture (checkerboard and concentric patterns). Finally, the angular threshold computation did not depend on object approach angle, over at least 135 degrees in the horizontal plane. A two-dimensional model of the responses of the LGMD based on linear summation of motion-related excitatory and size-dependent inhibitory inputs successfully reproduced the experimental results for squares and discs approaching perpendicular to the long axis of the animal. Linear summation, however, was unable to account for invariance to object texture or approach angle. These results indicate that LGMD is a reliable neuron with which to study the biophysical mechanisms underlying the generation of complex but invariant visual responses by dendritic integration. They also suggest that invariance arises in part from non-linear integration of excitatory inputs within the dendritic tree of the LGMD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia.

In responses to looming objects, the praying mantis shows a defense behavior, which consists of retracting forelegs under the prothorax. The role of a looming-sensitive neuron in triggering this behavior was investigated by simultaneously recording the activity and behavioral responses of the neuron. The mantis initiated the defense behavior earlier in response to larger and slower looming stim...

متن کامل

Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice.

Similar to most visual animals, crabs perform proper avoidance responses to objects directly approaching them. The monostratified lobula giant neurons of type 1 (MLG1) of crabs constitute an ensemble of 14-16 bilateral pairs of motion-detecting neurons projecting from the lobula (third optic neuropile) to the midbrain, with receptive fields that are distributed over the extensive visual field o...

متن کامل

Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior.

The firing patterns of visual neurons tracking approaching objects need to be translated into appropriate motor activation sequences to generate escape behaviors. Locusts possess an identified neuron highly sensitive to approaching objects (looming stimuli), thought to play an important role in collision avoidance through its motor projections. To study how the activity of this neuron relates t...

متن کامل

Computation of object approach by a wide-field, motion-sensitive neuron.

The lobula giant motion detector (LGMD) in the locust visual system is a wide-field, motion-sensitive neuron that responds vigorously to objects approaching the animal on a collision course. We investigated the computation performed by LGMD when it responds to approaching objects by recording the activity of its postsynaptic target, the descending contralateral motion detector (DCMD). In each a...

متن کامل

Multiplication and stimulus invariance in a looming-sensitive neuron.

Multiplicative operations and invariance of neuronal responses are thought to play important roles in the processing of neural information in many sensory systems. Yet the biophysical mechanisms that underlie both multiplication and invariance of neuronal responses in vivo, either at the single cell or at the network level, remain to a large extent unknown. Recent work on an identified neuron i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2001